
A devil's staircase in the Zeeman response of the 1D half-filled adiabatic Holstein model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys.: Condens. Matter 6 5891

(http://iopscience.iop.org/0953-8984/6/30/010)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 12/05/2010 at 19:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/30
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


3. phys.: Condens. Matter 6 (1994) 5891-5918. Printed in the UK 

A devil's staircase in the Zeeman response of the ID half-fded 
adiabatic Holstein model 

Christoph Kuhn and Serge Aubry 
Labomtoire Leon Brillouint, CE Saclay, 91191-Cibsur-Yvette W e x .  France 

Received 4 November 1993, in final form 17 Mxch 1994 

Abslract The magnetization of the half-filled I D  adiabatic Holstein model in a magnetic field is 
investigated at 0 K. It has been proven elsewhere that at large enough electron-phonon coupling 
the ground State of this model with a large applied magnetic field is a mixed bipolaronio 
palaronic configuration (at any band fiillng and at any dimension). !a the half-filled case we 
propose 3s ground state for these polarons and bipolarons an ordered s v u c t w  which tuns 
out to be equivalent to a periodic (or quasi-periodic) m y  of neuval solitons and which 
appears physically as spin density waves, We descnbe new improved numerical techniques 
for calculating these configurations and their energy. 

It is predicted for large enough electron-phonon coupling k and confirmed numerically for 
k > kh 2 I .4 that the symmetry of the neutral soliton is broken and that there exist two kinds 
of neutral solitons (right and left). 

The incommensurate "rays of neutral solitons exhibit a transition by breaking of analyticity 
at k = 4 c 1.8 (where k, depends an thc incommensurability ratio) with the s m e  characteristic 
properties 3s for the incommensurate structnres of seveml other models, especially of the 
promtype Frenkel-Kontorowa (FK) model. In the non-analyuc regime we can determine the 
effective shape of the bipolmn and of the polamo, which wkes into account their interactions. 

The magnetization as a function of the magnetic field is found to vary as il devil's staircase, 
each plateau corresponding to a commewxale m a y  of neutral solitons. The first plateau 
corresponds to a svuctw with no neutral soliton. while the magnetic threshold field required 
to emss its edge corresponds to the energy of this neutral soliton. In malogy with the FK model 
this devil's staircase is believed to be incomplete if  there is an analyue incommensurate m y  
of neuval solitons (k < 1 8), and complete otherwise. 

The magnetic threshold field required to observe the beginning of these devil's staircases 
could be accessible in -1 charge density waves, if their electronic gap (which is found to be 
b o u t  four times the energy of the neutral soliton) does not range beyond 100 K. However, 
the value of this threshold should be reduced significantly by thermal fluctuations and by the 
existence of a Hubbard term. which both reduce the (free) energy for breaking the bipolamns 
into polarons and then favour the formation of m y s  of neutral solitons. 

1. Introduction 

A polaron is a single electron localized in a potential well: induced by electron-phonon 
coupling and reinforced by the subsequent lattice deformation the polaron is formed self- 
consistently. A bipolaron is a pair of electrons with opposite spins localized self-consistently 
for the same reason. A priori. these concepts are only clear for a single polaron or a single 
bipolaron in the whole system. When there are many electrons in the system this definition 
becomes unclear, because the single-particle wavefunctions may not be localized in a single 
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potential well. Nevertheless, whether the electronic wavefunction is localized or not, a 
precise definition for the many bipolaron and polaron structures can be found. 

The basic idea for defining these configurations is to follow them by uniform continuity 
from a limit of infinite electron-phonon coupling, where their existence is obvious at any 
density. At this limit, which is called ‘anti-integrable’ (Aubry 1994), the electrons are 
localized on arbitrary single sites and are thus strictly isolated from each other. There is a 
lattice distortion at the site, which is occupied by two electrons of opposite spin (‘paired 
electrons’). By definition, this site is occupied by a bipolaron, which is not magnetic. When 
only one electron is present at the site (‘unpaired electron’), the lattice distortion is weaker 
and, by definition, this site is occupied by a polaron, which is magnetic. The empty sites 
are holes. 

Within the adiabatic Holstein model this anti-integrable limit is obtained by dropping 
the term corresponding to the electronic kinetic energy in the Hamiltonian. The persistence 
of arbitrary chaotic bipolaronic, polaronic or mixed polaronic-bipolaronic structures have 
been proven recently (Aubry etal 1992, Baesens and MacKay 1993, MacKay and Baesens 
1993) for this model, when the electron kinetic energy is switched on up to a certain critical 
value or, equivalently, at large enough electron-phonon coupling. These results hold for the 
model on any lattice, at any finite dimension, at any electron density and with or without an 
applied magnetic field. These arbitrary distributions of bipolarons and (or) polarons (which 
can be periodic, chaotic or otherwise) depend continuously on the amplitude of this kinetic 
energy term and they remain distinct. 

Because of this continuous dependence these states are still called bipolaronic, polaronic 
or mixed polaronic-bipolaronic configurations, even though the kinetic energy term no 
longer vanishes in the Hamiltonian. However. this result does not imply that each single- 
electron wavefunction remains localized, but concems only thc global electronic density 
function, where the electrons are indistinguishable. The electronic densities and the lattice 
distortions associated with the distribution of polarons and bipolarons do relax from their 
initial values, which means physically that the bipolarons and polarons do not remain strictly 
localized on single sites. The mathematical technique used for the proof of the existence of 
bipolaronic and polaronic structures can also be used numerically for finding these relaxed 
configurations explicitly from their anti-integrable limit (see appendix A). 

In this regime of weak electronic kinetic energy or, equivalently, of strong electron- 
phonon coupling, the ground state of the adiabatic Holstein model has been proven to 
be one of the bipolaronic structures (i.e. a charge density wave (CDW)) obtained in the 
absence of magnetic field, and to become a mixed bipolaronic-polaronic structure (i.e. a 
charge density wave-spin density wave (CDWSDW)) when the magnctic field becomes strong 
enough (Aubiy et a1 1992). However, no precise information concerning the ordering of 
these bipolarons and polarons and the nature of the phase transitions in a magnetic field is 
given by the theorems. It appears that the problem of finding the ordering of the bipolarons 
and polarons without and afom.ori with a magnetic field strongly depcnds on the details 
of the model and especially on its dimensionality. Finding the bipolaronic and polaronic 
ground states of coupled electron-phonon models remains an open problem, which until 
now has never been approached in the literature except in the simpler I D  Holstein model 
without a magnetic field (Le Daeron and Aubry 1983a, b, Aubry and Quemerais 1989). 

We do not know yet any systematic numerical method for finding the ground states of 
such models, which we expect to become very complex in the general case. The aim of 
this paper is to study these mixed polaronic-bipolaronic ground state structures and their 
transitions on a specific example, which is the half-filled adiabatic Holstein model in one 
dimension and under a magnetic field. In this simpler case we found physical arguments for 
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conjecturing the precise configuration of the polarons and bipolarons in their ground state, 
thus allowing a numerical solution. 

2. The adiabatic Holstein model 

Let us recall the model (Holstein 1959) and give our notation. Its Hamiltonian is the sum 
of an elastic energy 4 e 1 ~ ~ ( ( u j ) ) ,  which depends on the lattice deformation ( u i ) ,  and of 
an electronic Hamiltonian H.l((uiJ) describing the motion of the electrons in the potential 
induced by this deformation. The quantum kinetic energy of the lattice is neglectedt. The 
elastic energy of the dispersionless optical branch of N Einstein oscillators is 

N 

*elast({ui)) = 1 $m+i (10) 
i = l  

with the scalar variable ui of site i, its frequency 00 and its mass m. In ID models the 
magnetic field does not contribute directly to the Hamiltonian by orbital effects (except 
perhaps by slightly changing the model constants T and A). It contributes mainly by the 
Zeeman term. Thus the tight-binding electronic Hamiltonian of the Holstein model in a 
magnetic field is 

Hel((ui))  = -i"x(~L~,~~i,,, +C:~C,+I,,) + A x u i ( n i t  + n i l )  - p x ( n , ,  +nil) 
i.n i 

with the standard notations: c:" and ci," are the creation and annihilation operators of an 
electron at site i with spin U being up (U =t) or down (U =$). 2T is the half-handwidth 
of the hare electrons, A is the electron-phonon coupling and p is the chemical potential, 
which fixes the total nuniber of electrons in the band. H is the magnetic field, g 2 2 is the 
Land6 factor and the Bohr magneton is 

( 1 4  
To find the ground states of this model the minimization of the total energy can he 

performed in two steps. First, the atomic distortion ( u t )  and the number of electrons with 
spin up, n,, and with spin down, n ~ ,  are fixed. The total number of electrons, n p  + n J ,  is 
thus given: in the half-filled case it is equal to the number of sites N .  The electronic energy 
is minimal when the electrons occupy the lowest-energy states with eigenenergy E , ( ( u i ) )  
defined by 

p~ = eh/2m, 2 9.274 lo-" J T-' 0.671 K T-I. 

- T@i+1 - T$i-l + Aun@i = E v ( ( u i ) ) @ i .  ( 2 4  
For convenience the indices v = 1 to N are chosen so the sequence E , ( ( u i ) )  is in increasing 
order. For a given configuration '(ut], nt and nL' the energy of the ground state of the 
electronic Hamiltonian (16) (with H = p = 0) is 

t Note, however, that we have proven (Aubry 1991a) lhat in the situation of a Fr6hlich conductivity with 3 
stcktLy gapless phuon mode, the Bom-Oppenheimer approximation (and afortiori the adiabatic approximation) 
for describing the wws is not valid. We conjecture that the effect of the quantum Iatke fluctuations on the 
long-wavelength pharons could make the CDW become unstable. The adiabatic approximation, which is standard 
for the calculations of w w s  in qU3si-LD systems, is valid only when the phason gap does not strictly vmish, that 
is. precisely in the bipolaronic and p o h n i e  regime at large enough electron-phonon coupling. 
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The second step for finding the ground state is to search for the configuration ' [ U ; ) ,  nt ,  n ~ '  
that yields the minimum value of the total energy 

@P((uiI ,nt ,nl)  = @e~ast({uiI) + % . e c c ( { ~ i ~ , n ~ , n ~ )  - P ( Q  +nC) - I ~ P B H W ~  - n ~ ) .  (3) 

C Kuhn and S Aubry 

It is convenient to define new parameters and dimensionless constants 

ui = u i J 3  k =A,/% h = i(g/2T)pBH p = p / 2 T .  (4) 

Then with 2T as the energy unit the initial Holstein Hamiltonian (Ib) reduces to 

and the total energy F({u, , ) )  = @({ui ) ) /ZT becomes 

(5b) 

- $:+I - $:-I + = Ev({uil)@;. (54 

where 

The dimensionless parameter k characterizes the strength of the electron-phonon 
couplingt. The extrema of this form (5b) fulfil 

a F ( { u i ) ,  n t ,  n ~ ) / a u n  = u n  + (k/2)Pn = 0 ( 6 4  

where the local density of electrons pn = pnt +poi is the sum of the density of the electrons 

"=l 

with spin t and .1 respectively. 
At large enough electron-phonon coupling the theorems proven by Aubry et a1 (1992) 

and Baesens and MacKay (1993) assert that this form has infinitely many extrema, 
which correspond to polaronic and bipolaronic metastable configurations. Each of these 
configurations is obtained by relaxation of an initial configuration {q), where the electrons 
are localized on single sites. By definition, ui = 0 if there is no electron at site i, ai = 
if site i is occupied by a polaron and uz = 1 if it is occupied by a bipolaron. 

For an arbitrary distribution of polarons and bipolarons, (ai), we fix for example as f the 
up direction of the free spin of the polarons (ai = 4). Then ( U ; }  also determine the number 

t Aubry era1 (1992) give the Holstein model in its full qumtum form. but for mthematical convenience its 
Hamiltonian was transformed differently in order to have a small dimensionless coefficient I = Ilkz  for the 
electronic kinetic energy instead of a large dimensionless electron-phonon coupling constant h. In that model, 
the phonons were represented by boson opentors with the electron-phonon coupling constant g = A-. 
The unit of energy was chosen to be 8g2/hwr = 4 A 2 / m 4  and the deformation field ui = (4g/hwr)(a: t ai)  or 
equivalently ui = (2A/moi)ui .  The adiabatic Holstein model without magnetic field then reduces from @a) to 
1- xi[uf t ui(ni+ t n i l )  - ( t / 2 )  Ei,o(cT+,,qci.,, t c & c i + ~ . ~ )  showing that the regime of lyge electron-phonon 
coupling is also the regime of s m d  electronic kinetic energy. 
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of electrons n, and n l  with spin t and .1 respectively. The corresponding configuration of 
the adiabatic Holstein model is obtained at finite k by relaxation of the total energy (5b) 
from the initial configuration {uj) = -k(q} (the bipolaronic or polaronic configuration at 
tbc limit k = CO). This can be achieved in principle by following numerically the gradient 
flow of the potential energy given by (6) from this initial state. This method was used 
in early work (Le Daeron and Aubry 1983a, b), however, more efficient techniques can be 
implemented for faster numerical convergence (see appendix A). The improved theorems 
(Baesens and MacKay 1993) yield for the ID Holstein model the following exact bounds, 
which determine minimum domains of existence: 

for all bipolaronic configurations (ui = 0 or 1)  
for all polaronic configurations (ui = 0 or f) 
for all mixed polaronic-bipolaronic configurations (U, = 0, i or 1) 

When these conditions are fulfilled, two different initial states necessarily yield two 
different final metastable states {U(  J. When k becomes smaller, many local minima start 
to disappear by merging with one or more extrema of the variational form according 
to mathematical rules (Morse theory). In this many-variable variational form a complex 
and infinite cascade of bifurcations follows; these are still unexplored. These bifurcations 
start for small enough k and then the topological entropy of the whole set of metastable 
bipolaronic or polaronic states decreases, but does not vanish until the electron-phonon 
coupling constant k becomes strictly zero. This behaviour is similar to that observed in 
the Frenkel-Kontorowa (1938-1939) (FK) model (Aubry and Quemerais 1989). There are 
still many bipolaronic and polaronic configurations, which survive even fork very small! 
A partial extension of these theorems to the Holstein-Hubbard model has been recently 
obtained (Aubry 1993, 1994). It has been proven that the formation of bipolaronic and of 
mixed polaroniobipolaronic structures at large electron-phonon coupling still holds when 
the electron-electron repulsion is not too large, but that there are only purely polaronic 
structures when this repulsion exceeds some critical value. 

Furthermore, for the original adiabatic Holstein model theorems proven by Aubry er ai 
(1992). at large k the ground state is purely bipolaronic (bipolaronic CDW) in the absence 
of the magnetic field and it becomes a mixed polaronic-bipolaronic structure (polaronic- 
bipolaronic CDWSDW) for a strong enough magnetic field. Therefore the problem of 
finding the ground state of such models reduces to the problem of finding the corresponding 
configuration of pseudo-spins (q). 

k > 2.3463 
k > 3.3181 
k > 3.682. 

3. Bipolaronic ground states in the ID Holstein model without a magnetic field 

At small electron-phonon coupling k and in the absence of a magnetic field the ground 
state of this ID model is expected to become a Peierls CDW, where nT = "1 (Peierls 1955). 
The wave vector of the periodic lattice distortion (PLD) associated with the CDW is twice 
the Fermi wave vector 2 q ~  = <Q (where 5 = n p / N  = n l  f N  is the band filling and Q the 
wave vector of the reciprocal lattice). The half-filled case, < = 4, has an exact solution 
corresponding to a dimerized chain (see Feinberg and Ranninger 1983), whilst the standard 
calculation of the CDW-PLD is only approximate for the incommensurate band filling (except 
in exceptional modified models). 

In this incommensurate case, the transition to a bipolaronic ordering has been 
numerically observed by increasing the electron-phonon coupling k, as a second-order 
phase transition called transition by breaking of analyticity ("BA) (Le Daeron and Aubry 
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la) 

Figum 1. ( a )  A sequence of bipolamns and holes defined by (7) for the ground state at t = f . 
Black dots are holes and circles with opposite mows are bipolamns. (b )  As (a) for the retarded 
discommensumtion (( -t $ with < c 4) and the advance discommensuration (t - f with 
< > f). (e) As ( 0 )  f o r t  = 3.  This smclure can be also interpreled as a periodic sequence of 
retarded discommensumlions as shown in (b). 

1983a, b, Aubry and Quemerais 1989). For example the TBA was observed at k 2 1.58 
for 5 = (3 - d ) / 2 .  This transition is physically characterized by the lattice pinning 
of the CDW and a series of associated physical features. On the basis of early numerical 
observations it is conjectured that the ground slate associated with the bipolaronic CDW 
keeps the same Peierls wave vector 2 q ~  at all electron-phonon couplings. Thus finding 
the ground slate of the adiabatic Holstein model in the absence of a magnetic field is 
equivalent to finding the pseudo-spin dishibution [q = 0 or 11 of the bipolaronic structure. 
This sequence is found to be identical to the sequence of pseudo-spins that describes the 
sequence of discommensurations in the ground slate of the FK model Wallet et al 1988). 
We interpret this feature by saying that (within this specific model) the bipolarons interact 
by repulsive forces, which are convex at all distances and which tend to give them an 
equidistant distribution?. This distribution of bipolarons is found by starting from an 
equidistant distribution (n - a)/< (where 1/< is the average distance and 0 < a .< 1 
some arbitrary phase) and by moving each bipolaron to the closest integer site. Then the 
nth bipolaron is located at site in = Int((n -a)/{ + 4) (Int(x) is the largest integer smaller 
than or equal lo x ) ,  which yields equivalently 

where x t ( x )  is a oneperiodic function defined as 
0; = X < ( i {  + a )  ( 7 4  

xt(x) = Int(x + </2) - Int(x - </2). (76) 
This function xt(x) is called the hull function of {U,}. Using the relaxation technique 

described in appendix A we claim to obtain the ground slate of the adiabatic Holstein model 
without a magnetic field and with band filling { by starting from configuration (ui = -ku;], 
where [ui)  is given by (74. Schemes of bipolaronic distributions given by (7) are 
represented in figure 1: the commensurate ground state for 5 = 4 (figure I@)), the retarded 
and the advanced discommensuration of this commensurate ground slate (figure l(b)) and 
the commensurate ground state for { = 

f This result has not been proven rigorously and is restricted to the original Holsrein model where the phonons are 
dispersionless. When a phonon dispwsion (even s d l )  is prwnt,  the elastic interaction between thc bipolvons 
introduces a non-convex pm which is responsible for phase separations between phases with different electronic 
densities when the elecuon-phonon coupling becomes Ixge enough. This transition is indeed numerically observed. 
Note however that in physical situations, the long-range Coulomb interactions between the bipolxons prevent the 
formation of these phase sepxalions but produce new incomemurare phases with wave vectors [hilt are not 2 p ~  
(Raimbadt and Aubry 1994). 

(figure I@)). 
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A retarded discommensuration is obtained by taking the h i t  of the sequence (7a) by 
lower values at < = 4 -0 with the phase cy(mod 1) = +:. The advanced discommensuration 
is obtained identically by taking the limit by upper values at < = 4 + 0 with the phase 
cy(mod 1) = &$. All these sequences can be built by blocks following a sequence of 
inflation rules determined by the continued fraction expansion of < (Vallet et al 1988). 
which were initially involved in understanding the thermodynamical behaviour of the 
incommensurate structures in the FK model, but can be used here too. 

For rational < the numerical studies for the half-filled ID adiabatic Holstein model 
carried out elsewhere allow one to conjecture, in the case of this specific model only, that 
the ground state configuration is a continuous function of k and never bifurcates when k 
ranges from zero to infinity: the characteristic feature to be defectible is preserved. The 
discommensurations indeed correspond to defects in the bipolaronic ordering. The ground 
state can also accept chaotic distributions of discommensurations because of the intrinsic 
lattice pinning. Consequently, we can say by continuity that the ground state remains always 
a bipolaronic structure even for small electron-phonon coupling. 

When C is irrational we observe the TEA at k = kc(<). The value of kc(<) is rather small 
and around 1.5 (1.58 at most). Since the amplitude of the CDW exponentially decreases and 
becomes negligible for k c 1.4, the regime of the standard Peierls-Frohlich analytic CDW 
is restricted in rather a narrow domain. This TBA can be viewed in some extended sense 
as a bifurcation of infinite order. At this transition the ground state becomes undefectible 
(see e.g. Aubry and Quemerais 1989), which is characterized by the fact that the size of its 
defects diverges. These defects can be classified hierarchically as the discommensurations 
in the incommensurate pseudo-spin sequence (7) as described by Vallet e taf  (1988). Then 
we can say that all these defects of the ground state merge with the ground state itself, when 
the analyticity of the ground state is restored. Despite this TBA the sequence (7) still yields 
to the ground state by relaxation, even when the CDW is analytic: at this irrational electronic 
concentration the variational energy (5) has a unique minimum, which is the CDW (we call 
this state undefectible). 

4. 
magnetic field: the half-filled case 

The Zeeman response of a magnetic field applied to a metal makes the number nT = CTN 
of electrons with spin t different from the number "1 = < $ N  of electrons with spin 4. This 
magnetization corresponds to the Pauli susceptibility. In the case of a ID metal under a 
magnetic field coupled to a deformable lattice, the Peierls theory easily extends (figure 2). 
Within standard perturbation theory one should expect two superimposed periodic lattice 
distortions with wave vecton 2 q ~ t  = <rQ and 2qF1 = <$Q. The first one corresponds to 
a CDW for electrons with spin f' and the second one corresponds to a CDW for electrons 
with a spin J.. Since the wave vectors of the modulations are different, the system develops 
in addition an SDW. This perturbative argument is approximately valid at small coupling, 
when these two waves are weakly interacting (see Brazovskii et al 1981, Brazovskii 
and Matveenko 1984) but becomes surely wrong at large coupling and when the wave 
vectors Q<l, Q<r and Q have no commensurability relations (i.e. do not fulfil any relation 
nl{T + n z t ~  + ng = 0, where nl, nz and ng are integers). Moreover, the interaction 
between the two modulations could even break the strict quasi-periodicity of the system. 
Indeed, when three incommensurate periods are competing, we have examples in simpler, 
but different models (Aubry et af  1987, Aubry .1989, 1991b), where a 'weakly periodic' 

Mixed potaronic-bipolamnic ground states in the ID Holstein model under a 
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structure becomes the ground state. The Fourier spectrum of such a structure is no longer 
a sum of Dirac peaks as for a quasi-periodic structure but a 'singular continuous' measure 
with scaling properties. Unfortunately we have not yet found any tool applicable to the 
Holstein model for finding the ground state and its properties in the general case. 

C Kuhn and S Aubry 
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. :  j 

2qFLi 

2qFT- 
Figure 2. When a magnetic field is applied (in the direction corresponding to spin t) on a ID 
conductor. h e  Peierls instability occurs simultaneously and opens two electronic gaps. The first 
one is a1 wave vectors * q ~ +  for electrons with spin t and the second one at & p p ~  for elecvons 
with spin J.. When the electron-phonon coupling is small, the resulting CDW is expected to be 
well approximated by a linear superposition of these two periodic CDWs wilh wave vectors Z Q F ~  
and ZqFL. 

In the half-filled case corresponding to the condition er + 54 = 1 we have a 
commensurability relation and thus only two independent wave vectors. On the basis of 
known results obtained mostly with the FK model this situation is expected to be simpler and 
to yield usually incommensurate structures. The wave vectors Q{+ and Q<$ = Q - QCr in 
fact correspond to the same period for both modulations. Then we expect that the phases 
of the CDWS for spins t and 3. will lock on to each other, as this usually happens when 
incommensurate structures become commensurate. According to the theorems valid at large 
enough coupling the ground state has to become a mixed polaronic-bipolaronic structure 
described by a sequence of pseudo-spins [q = 0, 

(8) 
where for k = 00 uit and U ~ J  take the two values, 0 or 1. By definition, U;? = 1 if there is 
an electron with spin f at site i for k = 00 and cq? = 0 in the opposite case. UQ is defined 
identically for the electrons with spin J.. 

To find the ground state of the half-filled ID adiabatic Holstein model under a magnetic 
field we first study the ground state [ui} for a given <,, which has the energy per site 

or I}. We can write 
1 ui = ?(Uit  + U i J )  

and next we determine f+ by minimization of the energy 

W,) = *,et) - W C t  - 1) - P 
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as a function of the magnetic field. To fix the ideas we assume that the magnetic field is in 
direction t, which implies nt  > n& or equivalently <t > 1/2. We propose as conjectures 
two simple statements, which are compatible with the above Peierls prediction valid at small 
k and extrapolate the numerical results at zero magnetic field 

(i) for given electronic densities <? and (1 the ground state configuration (ui) depends 
continuously on k and 

(ii) the sequences (uit] and (u i~t ,  which determine the mixed polaroniobipolaronic 
structure at large k by equation (S), tend to yield independently two equidistant distributions, 
which are given by the same law as in (7a) 

uit = Xir (i<f + at) 

Oih = x<,(i<J +a$). 

(104 

( 1 Ob) 

Since Ct + <& = I ,  these two functions xtt(x) and xa(x) have in fact the same period and 
moreover we have 

(104 

The two phases a+ and a& are not arbitrary, but lock on to each other since 5.t + <J = 1. 
We found by numerical tests that at = -a$ yields the configuration with the smallest 
energy and that corresponds to a symmetrical hull function f ( x )  for ai = 0 .! or 1 (see 
figure 3). This condition tends first to maximize the number of bipolarons (whlch occupy 
the sites i where ui+ = ui& = 1 )  and second to form these bipolarons at the sites with phase 
i<t +at (mod 1) as close as possible to zero. In summary we assume that the pseudo-spin 
sequence (uc 1 

I 
X r , ( X )  = 1 - X ( , ( X  + 5) .  

' 2  

( 1  1 )  ui = 4 ( 1 + x t , ( i r t + a r ) - x t , ( i ~ 1 + a r t + ~ ) ) = x ; ( i ~ r + a t ) = 0 , 1  I or 1 

yields the distribution of polarons and bipolarons corresponding to the ground state. 

Figure 3. Hull functions X C ,  (x ) ,  xc, (x) and x ' ( x )  of the pseudo-spin sequences o,+. cj, and 
oj . 

We have not proved rigorously that the ground state is obtained by relaxation of this 
mixed polaronic-bipolaronic smcture. However, no contradiction will appear in our results. 
This can be considered as a good argument for having the true ground state of our system 
for half band filling. 
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Note, by contrast, that in the general case when <,, {I and 1 do not fulfil any 
commensurability relation, the sequence of pseudo-spins {ujt) and (q,} cannot be described 
by the form (loa) and (lob) for any square function. If such a form were valid, the 
ground state would contain polarons with opposite spins, but correctly the spins of all 
the polarons (if any) have to be aligned in the direction of the magnetic field. This remark 
invalidates, in the general case, the assumption suggested for continuum models (Brazovskii 
etal 1981, Brazovskii and Matveenko 1984) that the ground state can be well described 
by the superposition of two modulations with different wave vector for the electrons with 
spin f and .1 respectively. 

Now we analyse first the limit configuration obtained from (11) when <+ -+ f .  which 
is a bipolaronic configuration with only one polaron. This defect is the so-called neutral 
soliton. 

5. Ground state with a single polaron: the neutral soliton 

Neutral solitons carrying a spin were fist discovered within the SSH model (Su et al 
1979, 1980), a ID model with a half-filled band (different from the Holstein model) 
initially proposed for describing the quantum chemical properties of polyacthylene (a long 
hydrocarbon molecule with bond length alternation and an electronic gap). The neutral 
soliton is, by definition, a defect in the bond length alternation, which appears topologically 
in a large ring with 2N + 1 sites and 2N + 1 electrons (N + CO). It has no charge 
because the density of electrons is strictly preserved there is exactly one electron per site, 
but it must exhibit a free spin because the number of electrons is odd. A neutral soliton 
is a topological defect, which means it is the ground state of the model under appropriate 
boundary conditions. The word soliton implies a priori the dynamical properties of a 
travelling solitary wave, which this defect does not have necessarily, since it might be 
pinned to the lattice. We shall keep however this standard terminology. 

A neutral soliton also exists in the half-filled ID adiabatic Holstein model for the same 
reasons. As a consequence of the theorem on the ground states of the adiabatic Holstein 
model (Aubry et al 1992) it must become a mixed polaroniobipolaronic structure at large 
enough k .  Since it is a ground state of the system (without magnetic field) with an equal 
and odd number of sites and electrons, this mixed structure just exhibits a single polaron. It 
clearly appears that there is no symmetric sequence [ui] on the closed ring of length 2 N +  1, 
which could determine the mixed polaroniobipolaronic distribution and, consequently, 
because of this symmetry breaking there are at least two neutral solitons in our model 
when k is large enough. This symmetry breaking is a consequence of the discreteness of 
the lattice. In the original model, the continuum approximation was used and therefore no 
breaking of symmetry was expected (Su er a1 1979, 1980, 1981). 

The sequence (U;) ,  which determines the sequence of bipolarons and polarons of the 
neutral soliton, can be obtained from (11). when CT -+ 4 (by upper values). The two 
determinations are obtained by choosing the phase either q m o d  1 = +a or q m o d  1 = -I 4 

(see figure 4(a) and (b)). Both can be viewed as the superposition of an advanced 
discommensuration for the electrons with spin t and a retarded discommensuration for the 
electrons with spin .1 (compare with figure l(b)), which determines a sequence of bipolarons 
and holes with just a single polaron. The two possible determinations arc obtained by 
changing the relative phase of the two discommensurations. (If {T --f 4 by lower value, 
one obtains the same neutral solitons but with an opposite spin.) 

We checked numerically that the symmetry breaking of the neutral soliton does exist 
at large k according to our prediction. At small k the neutral soliton is found to remain 
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Figure 4. (a) A sequence (defined by equation (11)) of bipolarons, polarons and holes for the 
ground state in the limit <? + ;+.which characterizes the left neutral soliton. (b)  As (a) for 
the right n e u M  soliton. (c )  As (0)  for the left neuual soliton shifted by one unit cell. (d) A 
sequence (defined by equation (11)) of bipola", and polarons and holes for the ground state 
3t <? = 4 and (6  = 1 (WO unit cells). This can be viewed as an alternate sequence of right 
and left n e u M  solitans. (e) A sequence (defined by equation ( I  1)) of bipolnrons, polarons and 
holes for the ground state at <t = 1 and <) = f (two unit cells). 

asymmetric although it tends to become almost symmetric because its width diverges. We 
take care to confirm this asymmetry by detailed numerical analysis of the shape of the 
Peierls-Nabarro energy barriert of the neutral soliton. 

For this purpose we have to determine a continuous path in the space of configurations 
that translates the neutral soliton by one unit cell and that overcomes the smallest energy 
barrier. For k large enough the translation of a neutral soliton by one unit cell has to be 
performed in two steps, since there are two equivalent neutral solitons. We have to find first 
a path of configurations connecting the left neutral soliton (figure 4(a)) with the right neutral 
soliton (figure 4(b)), which yields a minimax configuration associated with the maximum of 
the energy along this path. We have to find next a second minimax path connecting this right 
neutral soliton (figure 4(b)) to the left neutral soliton shifted by one unit cell (figure 4(c)). 
Since our half-filled model possesses electron-hole symmetry, which consists in replacing 
the bipolarons by holes and the holes by bipolarons while the polarons are kept identical at 
the same sites, we note that by this transformation figures 4(b )  and (c) becomes equivalent 
to figures 4(a) and (b) respectively. Consequently these two minimaxes comespond by the 
electron-hole symmetry and their heights in energy are equal. 

Thus it is sufficient to study only a minimax path between the left and right neutral 
solitons. For thispurpose we first calculate the configuration (U!,] (with - N  < i < N) 
of-the left neutral soliton and its energy for k not too small (k z 1.5) and for a large 
system of 2 N  + 1 sites and 2 N  + 1 electrons ( N  N 50) with cyclic boundary conditions 
( U ~ + ~ + I  = ui). We use the technique described in appendix A taking as initial state the 

t Let US consider the family of continuous paths (x.(f)) with 0 6 6 1, which wnnects WO equal local 
minim of the variational energy (5) at (x.(O)] = tu.] and (x.(l)l= (v.1. For each path lx.(C)) we consider 
the maximum energy variation reached dong this path. The minimax, min(,((.)l w,<t<r F ( ( x n ( E ) l , n ~ , q )  - 
F([xn(0 ) ) ,  q. nb).  is defined as the minimum overthe whole family of continuous paths ( u i ( f ) )  of this maximum. 
The minimax configuration is the configuntion (g , )  that yields this minimax value. The Peierls-Nab- energy 
barrier is defined a.v the m u h u m  Of the energy variation along a path that realizes the minimax. This path is not 
unique, but its maximum remains the same. 
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mixed bipolaronic-polaronic sequence shown in figure 4(a). To fix these ideas, we set the 
polaron location at site 0 (UO = i). The right neutral soliton {U!] with the sequence of 
figure 4(b) is obtained simply by the symmetry relation U; = U;-,. It is convenient to 
define the coordinate U&) = 4 +$(U; - U ' )  of atom 0 and to parametrize the continuous 

a neutral soliton {U!( .$)} ,  which minimizes the variational energy (5) with the same initial 
state as the left neutral soliton but with the constraint of atom 0 fixed at U&'). When ( 
varies from zero to unity. we find numerically that there is a point 6% where the configuration 
of the neutral soliton under constraint becomes symmetric, ui(ts) = U#&), for each i 
and that {ui(t)] appears as a continuous function of 5 for 0 c 5 < ($. However, it 
becomes discontinuous for < ( < I .  Then it is more convenient to define the coordinates 
ul(e) = U; + (ys - ()/&(u~(tJ -U;) of atom 1 for ts < 5 2& in order to complete 
continuously and symmetrically this path of configurations: for each ts < t c 2es we 
calculate a neutral soliton {ui(t)), which minimizes the variational energy (5) with the 
constraint of atom 0 fixed at ul(t). Since (ui(5)) minimizes the energy of the system 
with only one constraint, this continuous patb of configurations must reach the minimax 
configuration at its maximum of energy. The curve corresponding to the energy variation 
of the configuration {U; ( ( ) }  as a function o f t  is the shape of the Peierls-Nabarm barrier 
(minimax) between the left and right neutral solitons (figure S(a)). This continuous path, 
which reaches the minimax at its maximum, is not unique but this choice is convenient. 
It has a single maximum, which corresponds to the symmetric neutral soliton and which 
is the minimax configuration. It appears that, for all values of k that can be investigated, 
the shape of this Peierls-Nabarro barrier does not change significantly when k varies apart 
from the change of energy scale, and the minimum of the energy always corresponds to 
the asymmetric neutral soliton while the minimax corresponds to the symmetric neutral 
soliton. The height of the Peierls-Nabarro barrier is found to vanish very fast for small k 
(figure 5(b)). 

It has been noted that the SSH model also yields in the discrete case two kinds of neutral 
solitons, which were called strong and weak (Bryant and Glick 1982). Although the SSH 
model does not possess a well defined anti-integrable limit, because the model becomes 
unstable at large electron-phonon coupling, in a modified (and more physical) SSH model 
that accepts large electron-phonon coupling, the existence of an anti-integrable limit is 
suggested by the existence of a TBA (Le Daeron and Aubry 1983b) observed numerically. 
This is backed up by the standard chemical representation of configurations of such models 
as a sequence of double bonds and single bonds (Kuhn 1989). Such a representation 
appears to be equivalent to the pseudo-spin representation (U; = 0 or 11, which is proven 
to be valid in our present model in the absence of a magnetic field. However, we suggest 
that the observation of Bryant and Glick (1982) is similar to our observation except that the 
minima and the minimax appear to be exchanged in the SSH model. The symmetrical neutral 
solitons (called strong and weak) correspond to the minima of energy while the asymmetric 
neutral solitons (not considered by Bryant and Glick) should become the minimax. We also 
know similar situations in some extended I% models where the minimax and minima of 
discommensuration can be exchanged. 

The energies of an asymmetric neutral soliton, of an advanced (or retarded) 
discommensuration and of the electronic gap for the dimerized ground state without defects 
are compared in figure 6. (To calculate these energies, we choose p = -k/2(ui) = -k2/4 
in (Sa) to have electron-hole symmetry.) According to the predictions of continuous 
models. it is found that for small k (k < 1.4) the energies of the neutral soliton and of 
the discommensuration are both equal to a quarter of the electronic gap. For larger k the 
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path of configurations ( ~ ( 6 ) )  connecting (U,) ? and {U;} .  For each 0 < t c 1 we calculate 
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Figure 5. (a)  The shape of the PeierlsNabarro energy 
barrier along the path ui(:) of the neutral soliton. (b)  
The Peierls-Nabm barrier of the neutral soliton versus 
k Oog plot. energy unie 2T). 

effect of the lattice discreteness becomes obvious. The bipolarons tend to become localized 
on single sites. Their interaction decays to zero and thus the discommensuration energy, 
that is, the energy difference of the configurations described by figure ] ( U )  and (b) ,  decays 
to zero. For larger k the energy of a neutral soliton is approximately the energy required to 
break a bipolaron into two polarons, which behaves as k 2 / 8 .  It is a quarter of the electronic 
gap, which behaves as k2 /2 .  

F@re 6. The energy versus k of the asymmetric 
neutral soliton Es, the dimmmensuradon Ed and of 
the electronic gap Eg for the Mf-Wed ID adiabatic 
Holstein model (energy unit 2T). 

6. Quasi-periodic arrays of neutral solitons: the transition by breaking of analyticity 

The mixed polaroniobipolaronic ground state configurations with pseudo-spin sequences 
(q} generated by equation (11) can be viewed as periodic or quasi-periodic arrays of 
neutral solitons with density per site C+ - {L. Figures 4(d) and ( e )  shows as examples 
the sequences of polarons and bipolarons obtained for <t = a (<$ = %) and for <+ = 7 
(Q = +) respectively. When C+ becomes an irrational number, we can reasonably expect 
a TBA similar to the TBA proven to exist for an array of discommensurations within the 
FK model. For <+ irrational the lattice distortion {ui) = -k /2 (p i }  or, equivalently, the 
electronic density can be described by a hull function 

5 

Pi = Pi t  +Pi( = g(iCt +a+) (W 
which has the same period as the hull function of the pseudo-spin sequence (11). It 
is convenient to define separately two hull functions g&) and gb(x) for the electronic 
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densities (6b) of electrons with spins t and .1 respectively 
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Pit = g t ( i t t + a t )  ( 126) 

pi& = gl(i<b +ad (124 

where g + ( x )  and g $ ( x )  have the same period and the same phase shift at - a1 = 4 as 
x o ( x )  and x < + ( x )  in (loa) and (lob). Of course we have g ( x )  = gt(x) t gr(x). 

The numerical calculation of the incommensurate mixed polaronic-bipolaronic 
structures are performed with the improved contracting operator technique described in 
appendix A. We study in practice finite systems, which are determined by the sequence of 
the ‘best’ rational approximates rJs, of 4 < <+ c 1 (see e.g. Hardy and Wright 1960) 
obtained by successive truncation of the continued fraction expansion of i t  at order n. 

<+ = l/[[ni + 1 / ( ~  + 1/[ ...+ l / ( ~ , ,  + . . .  )I]] = ( U I , L Z Z , .  . . , U,, ... I. (13) 

This expansion also reveals the block structure of the pseudo-spin sequence (ut] (Vallct 
et nl 1988). The system studied to approach the incommensurate structure is a ring of 
N = s, sites with n+ = r,, electrons with spin t and n J  = s. - r. electrons with spin J, a 
system with s, - r,, bipolarons and 2r. - s, polarons. We can also say that thc dimerized 
chain contains 2rn - s. neutral solitons. The plot of pit, pi$ and pi versus i(r,/s,)mod 1 
yields a fit of the periodic hull functions gt(x), g $ ( x )  and g ( x )  in (12). For s, Y 100 these 
curves become independent of the order of the approximation (within the graph accuracy). 
Several hull functions g t ( x )  and g&(x) are shown in figure 7(a) .  It can be checked that 

gt ( x )  = gt  (-x) ( 1 4 4  

(146) I gt(x) = 1 - sr(x + 2)  

which, as expected, have the same symmetry properties as the characteristic function (1Oc). 
In addition we also have 

s(x)=4(sr(x)+g1(x))= # + s t ( x ) - g & + $ .  ( 1 4 ~ )  

These curves appear as smooth curves for small values of k but, when k goes beyond a 
critical value kc(<,),  which depends on <+, they become sharply discontinuous. There are 
few large discontinuities, which remain practically unchanged, when the size of the system 
(the order of the rational approximate) increases, and many other smaller discontinuities, 
which require an accurate analysis on larger systems. 

A TBA is easily recognized. The same kind of transition with the same phenomenology 
was observed first in the FK model, but also in several models of Peierls chains and now 
in many other models for incommensurate structures (Aubry and Quemerais 1989). We 
also expect here that in the limit of infinite size each of these hull functions g ( x )  has 
infinitely many discontinuities, although it remains a bounded variation function. The 
scaling properties of many critical quantities at the TBA have been studied in details in the 
FK model by a renormalization approach (MacKay 1992). 

In the present model the physical characteristics of the TBA are those of a metal-insulator 
transition. For k c k&t) the phonon spectrum associated with the phase fluctuations is 
gapless. In the presence of an additional electric field the system should carry an electric 
current (and a spin current) by the uniform phase rotation of a+ according to the Frohlich 
mechanism (Frohlich 1954). (We pointed out in the earlier footnote that the adiabatic 
approximation used in this paper is not valid in the case of a Frohlich conductivity, thus 
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Figure 7. (a) Hull functions g + ( x )  (filled circles) and s+(x)  (open triangles) Fork = 1.6 and 
<t = 3 E (a - 1)/2. (b) As (a) fork = 1.8. (c )  As (a) fork = 2. ( d )  Hull functions of the 
SDWS pi+ -p i+  for several values of k. 

the quantum lattice fluctuations have to play an essential role.) For k > k&) a non- 
vanishing phason gap opens and the CDWSDW pins to the lattice; it becomes an ordered 
quasi-periodic array of polarons and bipolarons. The propagation of electrons becomes a 
diffusive propagation of polarons and bipolarons within the mixed polaroni-bipolaronic 
structure, which is thermally activated and insulating at 0 K. 

It has been rigorously proven for the FK model (Aubry etul 1991) and shown numerically 
for Peierls chains (Aubry et nl 1990) that the non-analytic ground states can be decomposed 
into quasi-periodic arrays of well defined objects called effective discommensuration (in fact 
its bond modulation) in the FK model, but which could be named differently (e.g. effective 
bipolaron etc) according to the model and its physical context. More precisely the lattice 
distortion is obtained as a linear sum of localized distortions associated with each object: 
their positions are determined by a generalized pseudo-spin sequence equal to the coding 
sequence, which characterizes their distribution at the anti-integrable limit. At this limit 
the localized distortion extends only at a single site (or bond). An incommensurate bond 
modulation thus appears to be the convolution of its coding sequence by shape factors, 
which can be physically interpreted as effective shapes of different kinds of objects after 
their interactions with the other objects have been taken into account. In the simplest 
examples (incommensurate structures in the FK model, ID Holstein model and SSH model 
without a magnetic field) there is only one kind of such objects, which is the effective 
discommensuration, but it has been also proven that there may exist more than one kind of 
such objects (but necessarily a finite number of kinds!) associated with a coding sequence 
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of several components. Numerical examples of extended FK models with several kinds 
of effective discommensurations were shown by Aubry et a1 (1991). where the coding 
sequence has several components. Even if the coding sequence is unknown, these objects 
can be associated with classes of discontinuities of the non-analytic hull function and thus 
can be identified numerically. 

These effective discommensurations do not only describe the incommensurate ground 
states, but they also describe accurately the configurations of the system at low temperature, 
when the disorder of the coding sequence becomes weak. This weak disorder physically 
corresponds to phase fluctuations with a small phase gradient, which appear because the 
slightly random coding sequences can be conshcted hierarchically by blocks up to a 
relatively high order (VaIlet etul 1988). We have some mathematical results, which confirm 
this intuitive representationt. 

We apply these general ideas to the incommensurate mixed polaronic-bipolaronic 
structures of our half-filled ID Holstein model in a magnetic field. These structures are 
characterized by two pseudo-spin sequences [q+] and { q c ]  given by (loa) and ( lob) .  
If the hull functions g ( x ) ,  g + ( x )  and g ~ ( x )  (defined by (12)) have a discontinuity at xo, 
they also have a discontinuity at x, = xo + ng+(mod 1) for n integer positive or negative 
(Aubry et ut 1991). This set of discontinuities [ X J  is called a class of discontinuities. 
Since at the limit k + CO these hull functions become 2@x) defined by (11) and xct(x) 
and x r , ( x )  defined by (7b) we find that we have two discontinuities at xt = < t / 2  and 
XJ = 5 ~ / 2  = f - 5t/2 (see figure 3). For most <t the classes of discontinuities are distinct, 
because there is no integer n such that X +  - x( = 4 = n<+(mod 1 ) .  We conclude that we 
must have at least two classes of discontinuities for g ( x ) ,  g+(x)  and g r ( x ) .  Our numerical 
analysis (see appendix E) shows the existence of two well localized shape factors {b:) and 
(b;] ,  which allow one to represent the spin t electronic density as a convolution of the 
pseudospin sequence by this shape factor 
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and are independent of the system size (see figure 8(u)). We find also the symmetry property 
b+ = bZi and b; = b:,. (15a) is equivalent to writing the hull function (12b) as 

g + ( x )  = C ( b z x r t ( x  - n5t) + b;(l - x< ,@ - n r ~ ) ) )  
n 

Since we have xi  pi+ = n+, equation (1%)  implies 

t Let us consider an incOmmeNW configumion (ui) = [&)‘(ar), which w be represented ns the convolution 
of an effective objecl [&) with the coding sequence (a;). A coding sequence [ril is said to be weakly 
disordered ut order n with respect to the referring sequcncc [q) when any subblock of symbols with length 
n[r;)i=,,+l,p+n of the infinite sequence [zi) also belongs to the sequence (ai). (i.e. them exists q such that 
ri = ~ i + ~  for p + 1 < i 4 p t n).  Then. if l u i )  is the exau eonfiguntion asswinted with ( T i )  and 
lull  = [S;).[r;) is the configuration obtained by convolution of the sequence (<it by the effective object {S i ) ,  
we hve supi (U, - U;] < K exp(-yn/2) where y is the Lyapounov coefficient or inverse coherence length of the 
inwmmensurate configuration ( u i )  and K is 3 canstant. 



As expected we find in the non-analytic phase fork > kc((?) that the electronic densities 
[b: -by)  and [b: +b;} are well defined and localized. They are independent of the size of 
the system, when it is large compared to their width. Formula (180) has an explicit physical 
interpretation. If only polarons are present in the system (on, fun, - 1 = 0 for all n ) ,  the 
electronic density is uniform, pi = 1. I fa  bipolaron is created at site 0 (uo? +UOOJ - 1 = +l),  
its conhibution to the electronic density of the whole system is b: + b; at site i ,  while for 
a hole (UO, +U,,$ - 1 = -1) it is the same with just the opposite sign. 

As we noted above this formula should also apply in case of weak disorder for describing 
the electronic density a't low temperature providing the number of electrons remains strictly 
one electron per site, i.e. the number of bipolarons and holes is the same. We have not 
yet performed the block construction that generates the double sequence {q, ui4) defined 
by (100) and (lob) from the continued fraction expansion of (t and which allows one to 
generate also the weakly disordered sequences by truncation. However, this construction 
is not essential in the framework of this paper, but would be useful for understanding the 
low-temperature behaviour of this model according to Vallet et a1 (1988). 

As expected the formula (1%) shows that bipolarons and holes (U", = un,) do not 
contribute to the spin density. For a polaron at site 0 (uo~ = 1 and u o ~  = O), the contribution 
to the spin density at site i is b:+b; and that to the electronic density is b? -bz7. Figure 8(a) 
shows some examples of the effective polaron for several values of k and the same value 
of I,. Its width clearly diverges at kc( ( , ) .  Figure 8(b) shows that its shape also depends 
on the electronic density. For a given k, it is more extended for the best irrational numbers 
(? (noble numberst). 

This phenomenon is a characteristic of the TBA between the bipolaronic-polaronic 
ground state and a Peierls-Frohlich CDWSDW (with gapless phason), where the polarons 

t Noble numbers m characterized by a continued &tion expansion (13) where for some finite no, the integer 
sequence (a.) becomes an = 1 for n > no. 
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Figure 8. (a )  Effective polarons (electron density (b: - b;) (open circles) and spin density 
{ b t  + b;) (filled circles)) fur <+ = (A - 1)/2 and sevenl values of k > k c ( ( + ) .  (b) Effective 
polvons (electron density b: - b;) (open circles) and spin density (b: t b;1 (filled circles)) 
for k = 2.0 and seveml values of 0. 

and bipolarons disappear. The phenomenology of this transition, which has been studied 
in detail in other models (Aubry and Quemerais 1989), is the same in this model. The 
bipolaronic-polaronic ground states are insulating, while the Peierls-Frohlich CDWSDWs 
are conducting. 

This "BA is not necessarily visible for all physical quantities. For example the elecbonic 
density of states shows basically three subbands (as predicted by Aubry etal (1992)), which 
does not change qualitatively above and below the TBA. The lowest-energy band corresponds 
to the doubly occupied electronic states. The midgap snbband corresponds to the singly 
occupied states or neutral solitons and the upper subband to the empty states. 

7. The devil's staircase as a Zeeman response 

When a strong enough magnetic field is applied to the system, a non-linear Zeeman 
response is expected, because of the creation of an array of neutral solitons, which induce 
a magnetization. For a given concentration xt - 1 of polarons or neutral solitons the 
bipolaroniopolaronic distribution of the ground state has been assumed to be given by 
the distribution (10). In the presence of a magnetic field this concentration of polarons is 
obtained by minimizing the energy per site Y (<+) defined by (9b). For that purpose one 
calculates numerically the configurations corresponding to the series of values of <? and 
their energy per site %&) defined by (9a) (see appendix C for technical details). Then 
the minimization of (9b) yields <? as an implicit function of h by the equation 

d*o(<t)/dCt = 2h. (19) 
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Figure 9. The electronic density of states (smoothed by Gaussians) for the mixed polxonio 
bipalxonic state of figure 7(c) (k = 2.0. <+ = E). 

Function *&,) is convex, because its derivative has been found to be monotonically 
increasing. This feature implies that the curve <+ = D(h)  defined implicitly by (19) is well 
defined and monotonically increasing. This observation confirms that our choice for the 
bipolaroniopolaronic distribution (10) of the ground state is consistent (although it does 
not prove rigoropsly that this is the right choice). If indeed *o(<+) were found not to be 
convex, this would imply that for certain values of <? a lower energy for the ground state 
would be obtained by a phase separation into two phases with different <+, but if this situation 
occurred, the distribution (10) would not correspond to those of the ground state. This is 
indeed what we found sometimes for large k in the non-half-filled case (<+ t (4 # I), if we 
made a careless extension of formulae (IO) for finding the ground state. As we suggested 
in section 1, this feature also confirms that the bipolaronic-polaronic distribution for the 
ground state is more complex in the non-half-filled case than in the half-filled case and 
requires a specific study. 

As for the FK model we expect that at all rationals <+ = r / s  (r and s are irreducible) 
the left derivative of *&+) is unequal and strictly smaller than the right derivative, but 
their difference goes to zero exponentially with the order s of the rational, thus we can 
confirm this feature only for the rational with an order s not too large. This curve D(h),  
which is continuous and monotonically increasing. has constant plateaux at all rational cr, 
corresponding to the situations where the array of neutral solitons becomes commensurate 
with the period of the underlying lattice. Such a curve is called a devil’s staircase (DS). 

According to the Lebesgue decomposition theorem any monotonic function D ( h )  is the 
sum of two monotonic functions D,(h)+D,,(h) , where D&) is an absolutely continuous 
function (by definition such a function is equal to the integral of iis derivative) and D,,(h) a 
singular continuous curve, which is continuous but has a zero derivative almost everywhere. 
Apart from a constant term this decomposition is unique. The DS D(h) is called complete 
if D,(h) is constant and incomplete in the opposite case. 

The existence of TEA for the array of neutral solitons implies consequences for the 
Zeeman response of this I D  adiabatic Holstein model, which has the same phenomenology 
as those observed and proved in the FK model. When for irrational <+ the corresponding 
incommensurate hull functions g + ( x )  and g&(x)  are analytic functions, the derivative 
d<f(h)/dh is defined and not zero. Then D ( h )  has an absolutely continuous part D&) 
and the DS D(h) is incomplete. Truly incommensurate structures of neutral solitons can be 
obtained for a non-vanishing measure set of magnetic field and these StrLlctures, which are 
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unpinned from the lattice, are conducting (the phonon spectrumi is gapless). Our numerical 
study fork = 1.8 (see figure lo@)) shows that for low-order rationals of [+ such as 1, i, 
i ,  etc the system is insulating (non-zero phason gap) and the DS is complete in this region, 
while for high-order rationals of st the system is conducting (vanishing phason gap) and 
the DS is incomplete there. 

The set of values of irrational <+. where k c k&+) has a finite measure, exhibits the 
typical structure predicted by the KAM theory with a gap at all rationals. In principle, the 
DS becomes complete for <t in each of these gaps (in some interval beyond the edges of 
each plateau of the DS). In practice, except for the low-order rationals, the gaps associated 
with these rationals become negligible. When the magnetic field is applied the system 
undergoes some re-entrant phase transitions between insulating and conducting states (see 
figure 10(a)). As conjectured by Aubry (1991a) we expect that the analytic mixed CDW- 
SDWS are unstable with respect to the quantum lattice fluctuations (which were neglected in 
this paper). Thus the conducting states should be simply metallic without charge modulation 
and with a uniform spin distribution. 

In addition, we have already pointed out for the FK model, the incomplete DS 
transformation is reversible with almost no hysteresis since the intermediate incommensurate 
configurations are unpinned from the lattice, while most commensurate configurations are 
weakly pinned. When k > sup{C+]k&+) the hull function g+(x)  is no longer analytic for any 
irrational c+. As a result the variation D(h) of <, versus the magnetic field h is a complete 
DS. The structure always remains an insulating mixed bipolaronic-polaronic structure. The 
set of values of the magnetic field, which yields an incommensurate structure, is infinite 
and uncountable, although it has a zero (Lebesgue) measure. In principle, if the system is 
supposed to be in equilibrium at any magnetic field, it is commensurate with probability one 
although the commensurability order can be very large. Our numerical study for k = 2.0 
(figure lO(b)) shows that the system is insulating except at very high magnetic fields, where 
it is conducting (sup(5t )kc( [+)  E 2.0). The global phase diagram is shown in figure 11 

We pointed out many years ago for the FK model that a complete DS cannot be observed 
strictly in real experiments. Unlike the case where the DS is incomplete, the Peierlo 
Nabam barrier (which characterizes the lattice pinning) does not vanish even for irrational 
C+ and always remains larger than a strictly non-zero bound. Only the main plateaux of 
the DS could be experimentally observed, because the defect energies of the low-order 
commensurate phases become relatively large. For the commensurate phase with a high 
order or for the incommensurate phases many metastable states exist, which cost very little 
energy (in our model they are characterized by weakly disordered pseudo-spin sequences 
as explained in an earlier footnote). Thus the complete DS should appear in real systems as 
an irreversible transformation with a global hysteresis and memory effects. Except for the 
main commensurate phases the system is generally trapped in metastable states, which are 
out of equilibrium and exhibit a more or less pronounced glassy behaviour. The larger the 

t The phonon spectrum is obtained by applying penurbalion theory for the second derivative of the total energy 
F ( ( u ~ ) . n ~ . n ~ )  fmm(5b) andlhendiagonalizingthemavix 
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Figure 10. (a)  The magnetization m = Z<t -1 against h. k = 1.8, with 4 1  rationals 1: < T / S  c 1 
of the wmmensurability ratio <+ = r / s  obtained by the Farey wnsmction up to the order 2 0  
insulating (non-zero phason gap 02) for low-order rationals of It; conducting (zero phason gap 
3) for high-order rationals of <t. ( b )  The magnetization m = 2<t - 1 against h, k = 2.0, 
with all rationals f < r/s  < 1 of the commensurability ratio <? = rfs obtained by the h e y  
construction up to order 20: conducting (zero phason gap w z )  only d high magnetic field h. 

Peierls-Nabmo barrier, the larger should be the entropy of the residual disorder allowed 
for these metastable states. An investigation of these metastable states, their entropy and 
their physical role has only been made in the ID FK model, which has no long-range order 



5912 C Kuhn und S Aubry 

at finite 
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Figure 11. Plveaux of the devil's staircase: magnetization m = 2 0  - 1 against k for all rationals t c r /s  < 1 with s Q 1 1  of the cnmensunbility ratio <+ = r /s .  va~ues of magnetization m 
agdmst h f o r k  = 0 (Pauli susceptibitily) are given. 

temperature (Vallet et ul 1988) and does not exhibit really frozen states. 

8. Application to physical systems: discussion and concluding remarks 

The characteristic energy required for a magnetic field to observe the edge of the first plateau 
of the DS at c+ = is the energy of a neutral soliton En.  To observe at least the beginning 
part of this DS in quasi-ID conductors the magnetic field h has to be larger than the edge h, 
of the first plateau of ~ ( h )  at 51. = 4. The potential energy for creating a neutral soliton is 
2Te,, while the magnetic energy gain is i g p ~ H  = 2Th. Thus the critical field h, is equal 
to the energy of the neutral soliton e,, which is approximately a quarter of the electronic 
gap, which itself is approximately the energy kB&F corresponding to the mean field critical 
temperature TMF of the dimerized CDW (in the absence of a magnetic field). Since the 
largest uniform magnetic field realizable does not exceed 40 T, this critical magnetic field 
will be observable for CDWS with a mean field critical temperature not larger than 25 K 
(the energy of the Bohr magneton being 0.671 K T-'). We expect that this argument on 
the critical magnetic field also applies for quasi-10 conductors with a non-half-filled band, 
although the DS found in this particular model is expected to become a more complex curve 
and requires a specific study. Real CDWS with a half-filled band and such a low critical 
temperature seem to be exceptional. 

Let us note that this critical value of the magnetic fieId is expected to be lowered 
if the electron-electron repulsion is taken into account, because the energy of breaking a 
bipolaron into two polarons (which is also the energy of two neutral solitons) will be reduced. 
However, if this electronic repulsion is sufficiently strong, we will have a polaronic SDW 
instead of a bipolaronic u)w (Aubry 1993). This is what might happen in some compounds 
of the ( T M T S F ) ~ ~  series (Beechgaard salts), which exhibit SDWs in the absence of a magnetic 
field with a low critical temperature (Jdrome 1990). Many phase transitions under a magnetic 
field were observed in these materials, but explained on the basis of magnetic orbital effects. 
Some similar organic compounds such as m(M(dmit)z)2 wifh M = Ni (Brossard etul 1990) 
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exhibit a CDW instead of an SDW with a critical temperature around 40 K, but this can be 
reduced under pressure (before the system reaches a superconducting state). We suggest 
that it should be easier to find q u i - I D  CDWS in the family of the organic compounds with 
low critical temperature; these could be good candidates for exhibiting a DS-like magnetic 
response related to the formation of arrays of neutral solitons. 

However, this work bas been focused on a relatively simple situation that is 
understandable. It suggests that there are more complex situations for the Zeeman response 
not only for bipolaronic CDWS but also for polaronic SDWS. Although the formation of mixed 
bipolaronic-polaronic structures under the Zeeman response for non-half-filled models is 
also highly non-linear, we have not yet found the bipolaroniopolaronic distribution of 
their ground state, and although our general theory predicts the persistence of bipolaronic- 
polaronic ground states in two and three dimensions, finding their distribution becomes a 
tougher problem (even in the absence of a magnetic field if the band filling is not h). 

The role of the temperature has not been analysed. We know examples where the DS 
persists in mean field models at non-zero temperature (Floria etal 1992). The width of the 
plateaux of the DS is expected to be reduced and the critical value of the magnetic field 
required for generating neutral solitons could then be lowered (entropy reduction of the 
resulting mixed bipolaronic-polaronic structure), but a specific study should be devoted to 
this effect. 

The contribution to the magnetic response of the orbital response of the bipolaronic and 
polaronic structures in two and three dimensions might also be important, if the system is 
not strictly ID. We have recently proved very generally that in 2D and 3D models (Aubry and 
Kuhn 1995 in preparation) a magnetic field localizes a single electron forming a polaron as 
soon as the electron-phonon coupling is not strictly zero. This effect appears to be essential 
in quasi-lo systems, but still has to play also an important role for 2D systems, i.e. in the 
physical situation encountered in the quantum Hall effect. This localization effect becomes 
very weak in isotropic 3D systems. 

A correct treatment for the magnetic response of real systems should involve both the 
orbital and the Zeeman response. The bipolaroniopolaronic models for CDWSDWS will 
give a wide variety of physical behaviours, which are still hardly explored. 

' 
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Appendix A. Numerical technique for finding bipolaron, polaron and mixed structures 

Three methods were used. The last one is presently the most efficient. We also briefly 
describe the first methods, which were used in early works. 

AI.  Gradient method (Le Daeron and Aubry 1983a) 

This is the most intuitive method. Since the bipolaronic and polaronic structures are local 
minima of the variational energy (56). it is natural to follow the gradient flow of this energy 
to reach one of these local minima. To find the configuration associated with a pseudo-spin 
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sequence [ui) we start from an initial configuration ui(0) = -kq and we integrate the 
differential equation 

(-41) 
where p., and pnl are functions of u,(t) obtained with (6b) from the eigenvectors of (5c) 
with their eigenvalues in increasing order. The program is stopped at un(m) for large 
enough t, when the gradient becomes smaller than a given accuracy E .  We know from 
the theorems given by Aubry et a l  (1992) that for large enough k the initial configuration 
{ - ! m i )  belongs to the basin of attraction of the final metastable state (un(w)], which is the 
required mixed polaronic-bipolaronic configuration. For smaller k we follow continuously 
the metastable configuration through its cascades of bifurcations. The flaw of this method is 
that it  requires a continuous integration on t, thus many steps for convergence and a matrix 
diagonalization at each step. 

A2. Contracting operator method (Quemerais 1987, Raimbault 1990) 

The contracting operator [U;) = T({un)),  which has been used for proving the theorems of 
Aubry et al(1992) and Baesens and MacKay (1993), is iterated from the initial configuration 
[-!mi]. For large k these theorems assert that this configuration belongs to the basin of 
attraction of the corresponding mixed polaroNc-bipolaronic structure. This operator is 
defined as 
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du,ldt = -W(ui).  n t ,  n , ) /au ,  = -(udt) + k/2(pn, + ,on$ 

4, = -k/2(~", + pn1). (A24 
It can be obtained as an approximation of (Al) with a coarse discretization of the 

W b )  
This algorithm converges much faster (by a factor of more than 10) to the same limit as the 
gradient method, which requires a much thinner discretization. This method still has the 
flaw that it requires a matrix diagonalization at each step. 

A3. Improved contracting operator method 

In this paper we use an improved contracting operator method, which does not require this 
matrix diagonalization at each step. This new method is obtained by a combination of the 
above method and diagonalizing a matrix by power iteration. 

Finding the minima of the variational form (56) is equivalent to finding the absolute 
minima over both {ui] and a set of n orthonormal vectors ($;) of variational energy 

continuous variable f 

udf + 1) - u&) = -(U,&) +k/2(pn, t h 1 N .  

where Iv) = (@;} is the uth vector of a set of n orthonormal vectors and 

WuiI) = x(-ln)(n+ 11 - I M  - 11 t ku.In)(nl) 6436) 
n 

is the Hamiltonian (5c). Then (A3a) can be written more explicitly as 
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with pn, and pnI defined by (6b). The minimum of (A4) with respect to U, is obtained for 
= -k/2(pn, + pn,) and yields 

The set of vectors {@:I spans the two subspaces called Eat for U = 1 to n t  and E., 
for U = 1 to "1. This variational form appears to be only a function of the trace of such 
operators, which are truncated to E., or En1, and thus is invariant under any vector rotation 
that leaves invariant these subspaces Ent and Enj .  The problem of minimization consists of 
finding these global subspaces, but not a specific set of vectors. 

The absolute minimum of Fo({@;)) is obtained by choosing for example for (@;I the 
n, first eigenvectors of the (non-linear) eigenequation 

(A6) - @:+I - @:-I - (kZ/2)(P., + P",)@: - 2@; = (E" - Z,@: 

where pn, = CZ, 1$:12 and pnI = E:', 1@,"12 are determined self-consistently. (We 
introduced -2@i in both members of (A6) so that all the eigenvalues (Ev - 2 )  are negative, 
the ones with the largest modulus being the smallest.) 

To find E., and E., we take the successive power of the member of (A6). For that we 
define the operator f, which transforms a given set of nt orthonormal vectors {ql)  into a 
new set of n, orthonormal vectors I+:] = ?((q:]). We first define a set of n t  vectors {q:} 
as 

which next are orthogonalized and normalized by using the standard GrahamSchmidt 
method and yield (+:). The sequence of subspaces spanned by (pi] converges after a 
few iterations to a limit space, which yields a local minima for Fo({@i]) although each 
(q:) has not yet converged to a good eigenvector. 

For finding the mixed polaroniobipolaronic state defined by a given sequence (ui = 0, 
or 11 we take as initial vectors the vectors q:, which are localized at single sites, where 

ni # 0. We choose first but in an arbitrary relative order a block of vectors (U = 1 to nl) 
localized at the bipolaronic sites where 0;. = 1 and next also in an arbitrary relative order a 
second block of vectors (U = "1 + 1 to n t )  localized at the polaronic sites, where ui = i. 
To preserve the initial polaronic and bipolaronic ordering the vectors of the first and second 

1 
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blocks must not be exchanged at each iteration, but the choice of the relative order in each 
block remains arbitrary. Then we apply recursively the transformation f on this initial set 
of vectors and stop the transformation when both electronic densities pol and pn, converge 
to a certain limit for all n. This limit state essentially depends on [q), but not on the details 
of the procedure. 

The rate of convergence for finding this pair of invariant subspaces En+ and E., is 
determined by the two main electronic gaps o f f ,  which separate the two invariant subspaces 
E., from Enl -E., and En, from its complementary space. (Our theorem predicts that these 
electronic gaps persist for large systems between the ntth and the (nr + I)th eigenvalue and 
between the nrth and the (nr + 1)th eigenvalue.) The rate of convergence does not depend 
on the relative distance of the closest eigenvalues as in a standard diagonalization (which 
has the Raw that this distance becomes very small when the size of the system becomcs 
large), but essentially depends on the main electronic gaps, which are independent of the 
size of the system. 

We checked that this third technique yields the same results as the contracting operator 
technique, but within a CPU time about 10 times less. Its advantage is that it works with 
only a coarse diagonalization of the operators. (However, it is convenient to perform one 
complete diagonalization of (A6) just after the last iteration to obtain the detailed electronic 
spectrum.) 
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Appendix B. Numerical calculation of the effestive bipofarons, holons and spinons 

The incommensurate bipolaronic-polaronic configuration [ui ) with incommensurability 
ration <? is approximated by a finite system with nt = r,, electrons with spin T, "4 = sn-rn 
electrons with spin .1 and s. sites. The integers r,  and s, are obtained from the series of 
best approximates rn/sv of ( r ,  which are given by the truncation of the continued fraction 
expansion (13) at order n. Plotting the electronic densities pit,  pii and p, as a function 
of the variable xi = ir,/s.mod 1 = p; / s ,  where the integers p 2  take all values from 
zero to s,, - 1 yields discrete approximations of the hull functions gT(x ) ,  gb(x )  and g ( x )  
respectively. The smallest phase shift of this commensurate structure is I/s.. 

We search first a periodic sequence of numbers af with a period s, such that 

where 

u m t  = xr+(mr. /c)  (Bib) 

is the pseudo-spin sequence for the electrons with spin t of the initial configuration 
calculated with the technique of appendix A. 

This sequence a t ,  is simply obtained by solving a set of s, linear equations with s,, 

variables. The sequence a: shown in figure B1 appears as two peaks, which can be split 
into the sum of two peaks at separation q. 

where 4.. is an integer that depends on the size s. of the system. When the order n of the 
approximate increases, we find that the shape of each of these two peaks does not change, 
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0.4 0.5 3 I 

Figure B1. a/ can bc split into a sum of two peaks at repantion qn (k = 2.0 and = 1). 
but q. increases with n. The essential point is that we find q,r./s,mod 1 = f for s. even 
and q,r,,/s,mod 1 = f ?c l/Zs. Z f fors, odd. 

Pit = x ~ m t ( b T - m  +b&-,) = m t  bt i - m + C u m + q n t b L , .  (B3) 
m m m 

We can now write (B3) and this yields (15a) with 

um+q.t = xt,((m + qn)rn/Sn) = xtv(mrn/sn + 1) = 1 - xc,(mrn/sn) 

= 1 - Xt,(m(l - rn / sn) )  = 1 - u m ~ .  U341 

Appendix C. Numerical calculation of the devil's staircase 

We calculate the energy W,(<+) for a sequence of irreducible rationals r / s  between f and 1 
(obtained by the well known Farey construction). We study systems around 100 sites. For 
this purpose we use a multiplicative factor q such that qs N 100 and study the system with 
qr electrons with spin t, ( s  - r ) q  electrons with spin and sq sites. We also calculate the 
energy of the same system but with a single retarded or advanced discommensuration. We 
consider the finite continuous fraction expansion 

(C1) 

(Ck) 

(C2b) 

(C3) 
is before the last truncation of (Cl). The systems with qr * r' electrons with spin t, 
(s - r ) q  f (s' - r') electrons with spin .1 and sq & s' sites contain a single advanced 
discommensuration or a single retarded discommensuration in their unit cell respectively. 
We have r t / s t  - r / s  = (-l)"/ss' and r - j s -  - r / s  = -(-l)"/ss-. 

The right and left derivatives q F ( r / s )  of Yo(<,) for <t = r / s  are obtained by 
calculating the energy differences [Yo(r*/s*) - Yo(r/s)] / (r*/s* - r / s ) .  They are found 
to be different with * A - @ / $ )  e Yh+(r/s), which yields the edge of the plateau of D ( h )  
corresponding to <, = r / s .  

r / s  = I/lai + l / h  + l/(. . . + l/adIl = ( a ~ ,  a..  . ?a,, = 1). 

r + / s +  = @ I ,  az, . . . ,a,, +q) = (qr + r' ) / (qs  + s') 

r - / s -  = (al .  az, . . . ,a,, -q] = (qr - r')/(qs - s') 

r 1s = ( a l . a z , .  . . ,an-l)  

With the remainder f l / q  we obtain rationals 

and 

where 
l ,  



5918 

References 

C Kuhn and S Aubry 

Aubry S 1989 J. Physiyoc Cdl,  50 C3 97-106 
- 19913 Mien>,wopic Aspmh of Non-Lineoriry in Condenwd Maller Physim (NATO AS1 Series B) YOI 264, ed 

A R Bishop, V L Pokcovsky and V Togneni (New Y O I ~  Plenum) pp 105-14 
- 1991b Geomerry and Thermodynamics (NATO AS1 Series B: Physics 229) ed J C Toledam (New York 

Plenum) pp 281-300 
- 1993 J. Physiyrre IV Coll. 3 C2 349-55 
- 1994 Pkysicn D 71 19€-221 
Aubry S, Abnmovici G and Raimbault I-L I992 J. Stat. Phys. 67 675-780 
Aubry S, Codmhe C and Luck J M 1981 Europhys. k l l .  4 63943 
- 1988 I. Slot. Phys. 51 1033-75 
Aubry S. Gosso J P, Abmovic i  G, Raimbault J Land Quemerais P 1991 Phjvica D 47 461-97 
Aubry S and Kuhn C 1995 in prcpantion 
AubN S and Onememis P 1989 Low-Dimenrionul Elecrmnic Prowrrier of Malvbdenum Bronzc.~ lrnd Oxides ed . .  

C Schlenker (Deventcr: Kluwer) 
AubN S. Ouemerais P and RaimbaultJ L I990 3rdEur. Conf on Low Dimemional Conductors andSvnerconducrors 

iDubnnnik, ed S Bmsic Fisiro 21 (supplemcni 3) 98-101 
Bmens C and MacKay R S 1994 Nonbnenriv 7 59-84 
Bmovskii S A and Mwecnko S 1 1984 SGV Phys.-JETP 60 804 
Bmo\skii S A, Mmecnko S I mnd Kirova N 1981 Suv. Ph)s.-J€TP 54 1209 
Bmsswd L. Cmadell E. Rmy S ,  Podget J P. ipgros J P and Vahdc L 1990 Physicn 21 (supplement 3) 15 
Bryml G W md Click A J 1982 Phyr R w  B 26 5855-66 
Feinberg D and Rmoinger I 1983 I Ph)r C: SolidSrurc Phjs 16 1875-85 
nom L M. Quemems P and Aubq S 1992 I. Ph)r.: Condew. Lfulfer 4 5921-46 
Frohlich H 1954 Proe. R. Soc. A 223 296 
Hard) C H and Wright E hl 1960 An Inrrrrducoon IO rhc Theory of Nwnberr (Oxford: ClmndonJ 
Holstein T 1959 Ann. Ph)r 8 32543 
Jerome D 1990 Jm Eur. Coni ~m L,w D,menrronul Conducrorr und Superomduclorr iDubmmnik) ed S Baisic 

Phlsro  21 (supplement 3) 1-6 
Kontoroi~a T and Freikel I 1938 Phy.7. Z So". Lln. 13 1 
- 1939 Fis, Z I 137 
Kuhn C 1989 Phys. Rev. B 40 7776-87 
Le Dasron P Y and Aubry S 1983a I. Phys. C: Solid Stare Phys. 16 4827-38 
- 1983b J. Phydyue Coll. C3 1573-7 
MacKay R 1992 Physim D 50 714 
MacKay R m d  Baesens C 1993 Quoruutn Chaos ed G Casati, I Guameri and U Smilansky (Amsterdam: Nonh- 

Peierls R E  1955 Qumtum Theory of Solid? (Oxford Oxford University Press) p IO8 
Quemeraiis P 1987 PhD Disserfaiion University of Nantes 
Raimbault J L I990 PhD Di.rsemtion University of Nantes 
Raimbault J L and Aubry S 1994 in preparation 
Su W P m d  Schrieffer J R 1981 Phyt Rev. Len. 46 738 
Su W P. Schrieffer 1 R and Heeger A 1 1979 Phys. Rev. Ltt. 42 1968 
- 1980 Phys. Rev. 8 22 2099 
Vallet F, Schilling R and Aubry S 1988 3, Phys. C: SolidSlule Phys. 21 67-105 

Holland) pp 51-75 


